
oo >
<tf OH

! 8 -448
•u

_5
OS f i

Q ti,
H

i H
Q H
CO co
U4 .u

FACTORS THAT AFFECT THE COST OF COMPUTER PROGRAMMING

VOLUME I

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-64-448

JULY 1964

L Farr

EGO RECORD COPY B. IW
RETURN TO

SCIENTIFIC & TECHNICAL i::?CSMATION DIVISION

(ESTI), BUILDiNG 1211

COPY NR. OF COPIES

ASTEft PH-*

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
LG. Hanscom Field, Bedford, Massachusetts

CY Nit

Al)W3i07
(Prepared under Contract No. AF 19 (628)-1648 by the System Development Corp.,
Santa Monica, California, 90406.)

When US Government drawings, specifications or other data are used for any purpose
other than a definitely related government procurement operation, the government
thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied the said draw-
ings, specifications, or other data is not to be regarded by implication or otherwise
as in any manner licensing the holder or any other person or conveying any rights
or permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

Do not return this copy. Retain or destroy.

DDC AVAILABILITY NOTICES

Qualified requesters may obtain copies from Defense Documentation Center (DDC). Orders
will be expedited if placed through the librarian or other person designated to request docu-
ments from DDC.

Copies available at Office of Technical Services, Department of Commerce.

ESD-TDR-64-448

FACTORS THAT AFFECT THE COST OF COMPUTER PROGRAMMING

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-64-448

JULY 1964

L Fair
B. Nanus

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L»G. Hanscom Field, Bedford, Massachusetts

(Prepared under Contract No. AF 19 (628)-1648 by the System Development Corp.,
Santa Monica, California, 90406.)

FOREWORD

This document is the first of two Technical Documentary Reports prepared for
the Air Force Electronic Systems Division as part of a project to develop
"better techniques for estimating the costs of computer programming. It
originally appeared as a System Development Corporation document, TM-l447/000/01.

The material contained in this report served as the basis for shorter papers
presented by the authors at two professional meetings: SDC document
SP-1372/OOO/Ol, Cost Aspects of Computer Programming for Command and Control,
at the Winter Military Electronics Conference in Los Angeles in February 1964
and SP-1376/OOO/Ol, Some Cost Contributors to Large-Scale Programs, at the
Spring Joint Computer Conference in Washington, D. C. in April 1964. The
authors wish to acknowledge the assistance of their associates at the System
Development Corporation who contributed many ideas and suggestions in the
course of this work, particularly V. LaBolle and N. E. Willmorth. They also
appreciate the early support and encouragement of this work by the Advanced
Research Projects Agency of the Directorate of Defense Research and Engineering.

Leonard Parr

Burt Nanus

iii

FACTORS THAT AFFECT THE COST OF COMPUTER PROGRAMMING

ABSTRACT

Although accurate estimation of computer programming costs is an important
prerequisite for effective programming management, such estimates have
historically been very unreliable. Some of the underlying causes of this
problem are discussed, and about fifty factors that appear to contribute to
the cost of computer programs are identified. Data concerning the effects
of a few of these factors upon cost are presented by way of illustration.
Recommendations are made for more detailed cost collection, cost analysis,
and experimentation.

REVIEW AND APPROVAL

This technical documentary report has been reviewed and is approved.

r.
0 I w .V V

SEYMOUR JEFFERY
Major, USAF
PROJECT OFFICIAL

iv

KEY WORD LIST

1. PROGRAMMING (COMPUTERS)

2. COSTS

3. EXPERIMENTAL DATA

4. ANALYSIS

30 June 1964 DI-3M7/OOO/02

TABLE OF CONTENTS

SECTION

I INTRODUCTION

A PROBLEMS IN DETERMINING COST FACTORS

B CURRENT METHOD OF COMPUTER PROGRAM COSTING

C SCOPE OF THE DOCUMENT

Page

1

1

3

3

II COST FACTORS OF COMPUTER PROGRAMMING

A THE JOB TO BE DONE

1 Operational Requirements and Design

2 Program Design and Production

B THE RESOURCES WITH WHICH TO DO THE JOB

1 Data-Processing Equipment

2 Programming Personnel

C THE ENVIRONMENT IN WHICH THE WORK IS DONE

1 Management Procedures

2 Development Environment

3 Facilities, Services, and Supplies

6

6

6

11

27

27

30

33

33

39

41

III CONCLUSIONS AND RECOMMENDATIONS

APPENDIX I—LIST OF COMPUTER PROGRAMMING COST FACTORS

APPENDIX n—CALCULATION OF LEAST SQUARES FIT TO DATA POINTS

45

53

30 June 1964 vl TM-lWf /000/02

LIST OF ILLUSTRATIONS

Page

Figure 1. Man Months Versus Computer Hours 5

Figure 2. Man Months for Program Design, Production and Test
Versus Program Size ll»-

Figure 2a. Man Months Versus Number of Operational Program
Instructions 15

Figure 2b. Man Months Versus Number of Utility Program
Instructions 16

Figure 3. Computer Hours Used as a Function of Program Size 17

Figure k. Number of Pages of Contract Required Documentation
Versus Program Size 20

Figure 5* Hypothetical Relationship Between the Total Cost
of Management Reports and the Resultant Value to
the Programming Contractor 35

Figure 6. Hypothetical Relationship Between Total Cost of
Program Implementation and Increasing Quality
Control Procedures 38

LIST OF TABLES

Table I. Cost Factor Classification Scheme

30 June 196!+ 1 TM-1^7/000/02

INTRODUCTION

One of the most important requirements for management planning is an accurate
estimate of the resources required to complete the project. In programming
management, the two principal resources to be estimated, scheduled, and con-
trolled are labor—measured in man months, and computer use—measured in
computer hours. Together, these two resources may be considered the variable
cost of producing the program. Reliable methods to estimate them are not
available. Historically, costs of programming have been estimated very
poorly; in fact, examples of budget overruns exceeding 100 percent have been
reported. Because cost estimation is a significant first step toward more
effective allocation of resources by programming management; because the
costs of programs may be a significant portion of the total costs of command
and control systems; and because the estimates have been little better than
guesswork to date, research toward better procedures for estimating is needed.

Development of a list of factors that contribute to cost is a logical first
step toward this goal. Such a list may also serve as a basis for recommenda-
tions concerning the types and kinds of data that should be collected, and as
a guide to more efficient resource planning, control, and expenditure of
funds during the implementation of a computer programming effort.

A. PROBLEMS IE DETERMINING COST FACTORS

During this initial effort, members of the Computer Program Implementation
Process (CPIP) project have been faced with difficulties that deterred
effective research in the cost area. These problems include the following:

1. Lack of Agreement on Terminology

The definitions of many of the terms used in computer programming
are not universally acknowledged. While there are many programming
glossaries, such as those prepared by the Association for Computing
Machinery (ACM) and the Bureau of the Budget, these are not in very
wide use and virtually every programming organization develops its
own set of working definitions to suit its own needs. Even if these
glossaries were accepted, they presently lack definitions of the
programming process, the products and the personnel. Specifically,
there is a need for definitions that permit easy comparison of pro-
gramming efforts.

2. Poor Definition of Product Quality

Little attention has been given to attributes that characterize the
nature or the quality of a computer program as a product. Those
efforts that have been initiated have seen little success, particu-
larly in definitions of quantitative measures of quality and

30 June 1964 2 TM-lV*7/000/02

performance. This lack of standard measures hampers reliable compari-
son of costs among various program systems. For example, programmers
use the terms "flexibility," "tightness of coding," and "maintain-
ability," but there seem to be no generally agreed upon criteria for
comparing similar programs on the basis of these attributes.

3. Poor Quality and Paucity of Cost Data

Present cost collection methods seem to be used primarily for account-
ing purposes and not for planning or control. For example, contract
costs are collected according to organizational units rather than
product or function to be performed. The effect of this practice is
that many of the costs that are collected by various organizations
are not comparable. Also, these data are usually not well defined
and, therefore, are not reliable for analytic purposes.

k. Dynamic Nature of the Field

Automatic data processing is a newly developed and constantly changing
technology. On the other hand, information-processing personnel tend
to "reinvent" and to use acronyms as labels; thus there is difficulty
in identifying what is really new. As a result, in the absence of an
analysis that might penetrate the "acronym barrier," any cost analysis
based upon experience data may have to be confined to a small sample
size which, in turn, increases the margin of uncertainty in any pre-
dicting methods that result—and, hence, in the cost estimates yielded
by them. Despite this drawback, continued analysis can significantly
reduce the uncertainty in today's estimates.

5. Nonquantitative Nature of Some Factors

Many of the factors that appear to affect costs of computer programs
are qualitative. In some cases, it is possible to predict at least
the direction that cost will be affected by an increase in a given
factor—for example, one would expect that the more experience the
contracting agency has with the particular type of program involved,
the less it will cost to perform the contract (all other factors
being equal). In other cases, it is not at all clear whether an in-
crease in the given factor will increase or decrease cost. Also, we
would expect some factors to be nonmonotonic or to increase cost in
one area while decreasing it in another. In this respect, the list
of factors may also serve as a source of ideas for future research
in program costing.

In the programming discipline, these limitations apply equally well to
development of management aids other than cost-estimating relationships.
These problems are being more commonly recognized and subjected to study,

30 June 1964 3 TM-IU7/COO/02

and remedial measures are being formulated. Meanwhile, despite the
deterrents listed above, analysis to improve cost estimation is continuing.

B. CURRENT METHOD OF COMPUTER PROGRAM COSTING

In general, computer program costing, as it is performed today, can be
outlined as follows:

(1) Similarities are determined between programs required and programs
known by the estimator to exist.

(2) On the basis of this analysis of experience, the size of the new
program (number of instructions) or subprograms in a program system
is estimated.

(3) This estimate of number of program instructions provides an inter-
mediate parameter with which to estimate man months and computer
hours. Some "rules of thumb" and conversion factors have evolved to
effect this step (see page 13). Some of these rules of thumb will
be discussed in more detail below. (Unfortunately, few managers or
experts expose their rules by documenting them.)

(U) Man months and computer hours may then be converted to dollars by
multiplying by some average rates.

(5) Finally, funds for computers, equipment, office facilities, travel,
overhead and general and administrative costs are added, for the
grand total.

Consideration of the factors detailed in this paper would allow a manager
to perform Steps (l), (2) and (3) somewhat more completely and systematically.
Information concerning many of the factors in the list may be determined at
the contract proposal phase, while information on others may not be known
until design is underway.

C. SCOPE OF THE DOCUMENT

The cost factors listed below are based upon experience. Specifically,
the factors represent answers by managers to questions such as, "Why did
you overrun your budget?" or, "Why did your program cost more or take
longer to develop than another program that appears to be similar?" We
have listed as many of these cost factors (answers) as we could identify
and collect. We mean by cost factors those variables that will affect
the expenditure of either man months or computer hours. The costs, as
measured in man months and computer hours, are not independent variables
(see Figure l), and many of the factors listed influence expenditure of
both resources. Some factors affect only labor or only computer use.

30 June 196k k TM-1U7/000/02

In some cases, a short discussion of the factor provides some ideas on
(a) the correlation of cost with the factor, (b) some rule of thumb
concerning the cost contributing effect of the factor, or (c) whether
any information can be collected about the effect of the factor.

In some cases, some experience data are shown, as in Figure 1. These
data should be regarded primarily as evidence that the process of pro-
gramming is susceptible to analysis. Although comparison with other
data provides insight to the reader, we do not recommend use of the data
for estimation purposes because the data were collected without benefit
of rigorous definitions and standards. Also, as pointed out above, they
may not be reliable. The heavy blacklines are eye-fits in all cases
and are not the result of statistical analysis.

Since many of the factors are interdependent, we would expect to find
high correlation among some of them in any statistical analysis. There-
fore, one difficulty we encountered was how to classify the cost factors
without excessive gaps or overlaps. For example, factors could have
been grouped into categories by work phase, such as program design or
test; by management activity, such as planning or evaluation; by units
of cost measurement, such as man months or dollars; or by the classic
accounting method of direct and indirect costs. These schemes all seem
to cause difficulties because of ambiguities and extensive overlap. The
classification scheme chosen for this paper was selected because it
includes all of the factors with a minimum of overlap (see Table I), and
the categories are appropriate for initial planning by managers. In each
category, the factors are underlined and followed by a discussion. In
future work we will identify the dependencies and hierarchies of factors.
Such analysis depends upon hard data. Therefore, the paper concludes
with (l) recommendations for additional work in which cost factors can be
further detailed and studied, and (2) some recommendations for specific
cost data to be collected.

30 June 1964 aM-iWr/ooo/02

Man Months

7000

6000

5000

4000

3000

2000

1000

2 4 6 8
Computer Hours (Thousands)

10 12 14

'•F

,/^G

B>'

D
A 1*- "*C

•E

16

Figure 1. Man Months Versus Computer Hours

30 June 1964 6 TM-1W7/000/02

II. COST FACTORS OF COMPUTER PROGRAMMING

A. THE JOB TO BE. DONE

Factors that arise from the requirements of the system to be designed
and produced are included in the following categories concerned with
operational and program design.

1. Operational Requirements and Design

The Operational Requirements and Design category includes
cost factors associated with the operating characteristics
of the system for which the program is being developed
(including the availability of such information).

The computer program should be considered a component of the
information-processing subsystem which is itself a component of
a larger system, e.g., a command and control system. Therefore,
the analysis and design activity for computer programming cannot
easily be separated from the same activity for the over-all system
design. If an attempt is made to isolate the computer program as
an independent component, many problems arise, especially when the
intended design and operation of the computer program is dependent
upon other components or subsystems and information-processing
policies or procedures that constitute the larger system in which
the computer program will be embedded. (This discussion is
oriented toward development of operational programs for a military
system, but the same considerations apply to the development of
computer programs for business, or of support or utility programs.)

The analysis of information-processing subsystem requirements aims
to provide detailed specification of the performance requirements
of this subsystem. Ideally, the requirements analysis and speci-
fication of resulting performance requirements are provided by the
customer or user of the larger system. In fact, it is often
necessary for the programming contractor to assist in the determina-
tion of these requirements, because the customer may have difficulty
in identifying them, and/or the programming contractor may have
difficulty in translating the language of the user into the language
meaningful to his own discipline (i.e., computer programming).

The aim of the operational design activity that follows analysis
of information-processing requirements is to specify how the needs
indicated in the requirements analysis will be satisfied by the
information-processing subsystem. In other words, the statement
of performance requirements must be translated into an operating
system description and operational design specifications that

30 June 196^ TM-14U7/000/02

TABLE I—COST FACTOR CLASSIFICATION SCHEME

Logical
Grouping

Category Name Category Definition

THE JOB
TO BE DONE

1. Operational
Requirements
and Design

Includes cost factors associated with
the operating characteristics of the
system for which the program is being
written.

2. Program Design
and Production

Includes cost factors associated with
both support and operational programs
as determined by the constraints
imposed by personnel, hardware and
operational requirements.

THE RESOURCES
THAT ARE
AVAILABLE

3- Data Processing
Equipment

Includes cost factors associated with
the hardware required to produce and
test a program, including all input,
output and peripheral equipment.

k. Programming
Personnel

Includes cost factors resulting from
the direct labor needed to completely
develop a program.

THE NATURE
OF THE
WORKING
ENVIRONMENT

5 • Management
Procedures

Includes cost factors associated with
the plans, policies, practices and
review techniques used in the admin-
istration of all phases of program
development.

6. Development
Environment

Includes cost factors resulting from
relationships with external organiza-
tions, including customers and other
contractors.

7. Facilities,
Services and
Supplies

Includes cost factors related to
supplies, physical plant, indirect
labor, and overhead.

30 June 196^ 8 TM-IUJ+7/OOO/02

include the division of functions and tasks between men and
machines, and the procedures for handling information. These
procedures include the specific requirements for the computer
program.

The degree to which the factors in this category affect cost
centers around the question, "How well are the operational
requirements of the system known?" If they are clearly known,
the programming job is more straightforward and less costly.
If they are not clearly known, as is usually the case, the costs
increase significantly as the programming contractor attempts to
clarify and detail them.

Therefore, completeness, clarity, and detail in statements of
requirements tend to have a damping effect upon costs. The
factors in this category start with broad considerations and
proceed to specific operational design considerations. In general,
when clarification and detailing are necessary, the earlier in the
system development process the programming contractor can work
with the user, the greater the possibility of cost savings in the
total computer program development effort.

(1) Extent of innovation in the system, its components,
and especially the automatic data-processing function.

The extent of innovation in the new system, or its similarity to
older systems, may be a clue to estimating how clearly or easily
its requirements can be stated. Similarity to other systems, to
the extent it is known, would certainly seem to indicate lower
costs, while innovation and new applications are clearly more
expensive to design and implement. Learning costs, although
usually not identified explicitly, are usually significant.

Clearly, this factor cannot be measured easily. However, one
can consider schemes that will yield a number, for example, list-
ing the system components and determining whether or not they are
new to the evaluator(s) would be one measure of newness of equip-
ment. A similar scheme can be used to measure newness of functions,

(2) Extent to which the programming designer will participate
in a determination of the information-processing needs
(i.e., the system and operations analysis, and the system
and operational design;.

It is possible for a programming designer to be awarded a contract
for computer program development before, during, or after comple-
tion of the system analysis and design activities. In general,

30 June 1964 9 TM-1^47/000/02

the earlier in the development process the programming designers
(programming specialists) can begin, the greater the probability
of a well designed and integrated information-processing system,
with fewer costly changes. The later in the development process
the programming organization begins, the greater is the proba-
bility that previous analysis must "be repeated (if performed at
all) in the determination of the requirements for data processing.

When the programming designer is called upon to assist in the
formulation of system requirements and design, a reduction in the
cost of the program system results. This provides early under-
standing on the part of the programming designer of the operational
problems faced by the using command; promotes early identification
of communications channels needed; and both establishes and
exercises these channels between the user and the program developer.

This factor, the extent of the program developer's participation
in the requirements analysis, is qualitative. Various methods
could be used to approximate a measure of the factor. For example,
in development of the large Air Force command and control systems,
work is being done to improve management control of the software,
i.e., nonhardware effort. The control is to be effected by
requiring that specific documents be developed during the early
phases (e.g., the Conceptual and Project Definition Phases in DOD
language). To measure extent of program developer participation,
one could simply count the documents to which some effort was
devoted by the programming specialists and compute the percentage
of the total documents that characterize the analysis.

(3) Number, size, frequency, and timing of system
design changes.

The degree of confidence and assurance the customer displays in
presenting his statement of requirements may be a clue to the
number of design changes to be expected in the course of system
development. Because of changes in the system environment or
improved understanding of it, information-processing system
changes may occur in the functions, objectives or components of
the system. Although evolving systems are characterized by change,
costs do increase with an increase in the number of changes. The
cost of introducing any specific change depends upon the degree
to which change has been anticipated in both design and implementa-
tion. As important as the number and extent of these changes is
the time the design change is introduced. We hypothesize that
the further system development has progressed, the more costly
will be any change because of its broader implications and effect
on completed work.

30 June 1964 10 OM-1HT/000/02

Although some measure of the cost effects could be secured "by
recording and gathering data on system changes, this highly
significant factor is difficult to estimate in advance. Analysis
of experience data might lead to identification of other factors
that correlate with change, and are easier to predict.

(h) Extent of system dispersion and number of interfaces.

A dispersed system that has many communications requirements to
he satisfied by a combination of the equipment and the computer
program will be, in general, more costly to design than one that
does not have so many interfaces. In the case of command and
control, when the system involves many commands at several levels,
it may be necessary to abstract, summarize, synthesize, or
elaborate on information for the commands. Further, the number
of information or command centers as well as their separation
suggest the need for adaptation data* and the need for emergency
or back-up configurations and procedures. Of particular signifi-
cance to the operational design are the problems of compatibility
introduced when more than one organization, e.g., military service
or government agency, is to be a part of the system and when some
centers use automatic data processing while others do not.
Experience has shown that solution of compatibility problems,
particularly if there is time phasing of capability at various
centers, is time consuming and expensive, in terms of cost as
well as design compromise. Also, the greater the number of
personnel involved in performing different functions within the
information-processing system, the greater the design cost because
of the increased number of operator positions (which may use
displays) and the increased number of inputs and outputs the
system must handle.

Numerical measures for this factor are readily available. Simple
counts can be made of number of centers, number of interfaces,
and number of operator positions.

(5) Number of other components and subsystems being developed
concurrently as part of the system, e.g., in a command
and control system, sensor, and communication subsystems.

•Geographic and equipment characteristic data peculiar to one specific
computer installation.

30 June I96U 11 TM-1^7/000/02

This factor measures the complexity and difficulty of developing a
program system that must reflect both the design and operation of
other subsystems that are, themselves, in a state of development.
As such, the factor is closely related to expected number of
changes (3) above. The parallel development of subsystems is
often necessary to hasten the completion of the operational system.
The greater the number of subsystems being developed in this
fashion, the greater the cost. Obviously, this factor is directly
measurable.

2. Program Design and Production

Program Design and Production includes cost factors associated
with support programs, and the operational programs as deter-
mined by the constraints of personnel, hardware, and opera-
tional requirements.

In the program design activity, the operating system description
and the operational specifications are used to create the detailed
programming specifications. Design of the program system involves
the determination of its broad logical subdivisions, the design of
an executive program that controls the sequencing of subprograms,
the design of the data base structure, the allocation of computer
storage, and the specifications for any utility and support
programs required.

The utility programs are the tools with which other programs are
built. Some of them may be already designed and available, but
usually some special tools will have to be designed and produced.
Since preparation of utility programs may take many months, both
this time and the associated cost must be considered in the costing
of the operational program.

The factors in this category, as in Operational Design, center
around the question, "How clearly understood are the (program)
requirements?" Again, completeness, clarity, and detail combine
to act as a damping factor on cost. Additionally, the program
design factors include size and complexity.

(l) Number of computer program instructions and the types
of programs that must be produced.

Sheer magnitude is a critical factor in allocating both resources:
men and computer time. As a numerical entity, it is the basis for
many of the rules of thumb currently in use by managers. Despite
its importance, little research has been done to develop reliable
methods for estimating the number of instructions. Very often,

30 June 1964 12 TM-1^7/000/02

these estimates turn out to be grossly inaccurate. One humorous
observation on this situation was made by J. W. Garvick: "Programs
do always get K times larger than a first thorough calculation
indicates. I use K = v."*

In the design of business data-processing systems, the number of
instructions has been poorly estimated. The Controller's Institute
says: "From the detailed flow chart, the number of instructions
required to carry out the operation must then be determined. This
is possibly one of the phases which has caused the greatest trouble
to most companies, since most EDP groups have at one time or
another seriously underestimated the number of instructions re-
quired. Most companies report that their estimates become more
accurate as they gain more experience in programming work, but
they still are forced to do a great deal of educated guessing,
based on a subjective evaluation of the complexity of the current
operation as compared to one previously programmed....Every
company we visited added a substantial safety factor varying from
20 per cent for a company which claimed, due to experience, a
reasonable accuracy in its estimating procedures, to 400 per cent
for a company which had found itself that far out on a previous
estimate."**

An experienced estimator examining a proposed system that will
have many similarities to previous systems may predict the number
of instructions with some accuracy. This is the case with some
command and control system programs that are designed in an
evolutionary manner—that is, by a series of models or phases.
For example, some cost guides for the ^25L program for the NORAD
Combat Operations Center have been developed based upon earlier
versions of the program system. The instruction estimates are
based upon number of registers for status and summary type
messages, for display manipulation functions, for input/output
tables, and so forth. Unfortunately, program histories and costs
are not often documented in sufficient detail (such as this) to
be useful in preparing such guidelines.

When no experience with a similar system is available, the number
of instructions is much more difficult to predict, since it can
be done, under the current state-of-the-art, only by weighing

*Leth-Espensen, J., On the General Problem of Compatibility of Computer
Programs and the Particular Difficulties Embodied in Programming for
Large-Scale Defense Systems. NATO, unclassified, ASTIA Document 273 710,
P-51.

**Business Experience with Electronic Computers, New York, Controller's
Institute Research Foundation, 1959> p.m.

30 June 1964 13 1M-lUl+T/0O0/02

subjectively many of the factors listed in this paper such as the
performance of the compiler, the nature of the hardware, etc.
One promising quantitative approach has been suggested by one of
our associates.* For a limited sample of program systems, he has
demonstrated certain consistencies in the relationship between
the frequency of occurrence of the decision class of instructions
and the total number of instructions in the program. This may be
an important step toward estimating instructions directly from
operational requirements.

With an estimate of the number of instructions, managers have
estimated cost in terms of the number of man months and computer
hours. (Number of instructions refers to machine language
instructions.) In some prior work at SDC, it appeared from a
small sample that the total number of man months is an exponential
function of program size. Figure 2 is based upon the results of
implementing eleven program systems. The dashed line is 200
instructions per man month, a frequently used rule of thumb for
large programs. Attempts to explain this nonlinearity (the devia-
tion from the rule of thumb) include recognition of such factors
as increases in communication and coordination and increased
complexity in the larger programs that may require an increased
amount of labor.

In work on smaller programs or program systems (of, for example,
less than 10,000 instructions), data showed rates ranging from
U00 to 1000 instructions per man month for individual programs.
A further analysis of the data shown in Figure 2 revealed that
an average of 225 instructions per man month are produced for
operational programs, and 311 per man month for utility programs
(see figures 2a and 2b). One possible explanation for the lower
cost of utility programs is that the program developer is the
user and therefore can write his own requirements with little
external coordination.

A similar investigation of the relationship between number of
instructions and number of computer hours has resulted in the
hypothesis that the number of computer hours used to develop a
large-scale program is directly proportional to the program size.
Figure 3 is based on experience with seven large program develop-
ment efforts.** A statistical analysis of these data is given in

* Bleier, R. E., Frequency Analysis of Machine Instructions in Computer
Program Systems, TM-1603, 19 November 1963»

**Management of Computer Programming for Command and Control Systems,
Heinze, K., N. Claussen, and V. LaBolle. System Development Corp.,
TM-903, 8 May 1963.

30 June 196^

Z %
2

Ik TM-1H7/000/02

T3
C
o

o

c
o

0)
_c
_c
o
D

a)
-Q
E
D
z

0000 0000000
0000 0000000
0000 0000000
CM — o 00 -o LO CO

o o o
•* ^

CM —

1) •P 3 co «
n tjO rH Cd <H M •H CO

F
C cd

•H a
i 0 to

•H O PH^
CO a 0 -P <0 M
u a -H 0) P A
U) 3 -p a) cd • 0
0 H CO M CM CO
H bO C C O N T

HH 0 <o a} cd •H CO
M p< a> CO CO ^ 0. 0 0> bO t£ cd

0
<M .3

-P q a a a>
cd -H cd CD M

O -P rH -P M H CJ
w O 3 c (JO c
xi CO ,Q 0 to co O -H
-p -P H Wrl M
a 10 U Cd CO .C! ft-d
Q O O O M -P

CH 3 ^ O <M P< ^-^ O CO G 0
a 0) Pr.H a
1 ^3 a a 0

+J <o a> as O -H
-p TS a • •H -P

to -P
a rH CO «l • 5 -H

cu
•Sfc

-p C -H
CO T3 M 3 t3

CU CO id u v <M M
u (0 > XI to 0

§, a) a co a rH O
v. 0 -P Cd tH

&5a
cd 0

SO-P
•H
•p -d

•H O co cd a>
co 3 ^g +3 CO

•p •N.O C
CO -P cd a 0 a

•H CO 0 co £S g-S 0 co cd
a -H jo co +>

si|4Uoyy-UDyy

30.June 196^ 15 1M-1M7/O00/02

<
z
o

o

CO

z z
o o
u u
Z> Z>

O £

z
o <

Q£ CO

o
<

o
o

2 o
00
X
\—
Z
o

1

z
<

x
u
<

O
LU
CO

Z)
Z

Z)
00

00

t—

Q
Z
<

\

. \

^

\\

L

0

\

\

a
0

O •H

O tf
CO 1

,—^v to
CO c
Q H

0
uo
CM

z
< ft
iy~> O

Z> a
0
0

0
X
»— 1

0
•H CM

z

-P
a)

0 0
O

IT) t—
1— u U

0)

ZD 1 en
\— s
00

0
0 z SS)

CQ ^— ^
uu
7 >

s
X •p

0 U 0
u~> < S

6
z rvi

o o o
CO

o o
uo
CM

O o o
CM

o o
UO

O o o
o o

SHJLNOW-NVW

30 June 196U 16 TM-1^7/000/02

oo
Z Z
o o
1— »— u u
3 3
Q c£
O £

Sz uo o -
<r Eu
o£ O <
O

G
R

A
M

R

O
F
 M

o
an

>
i— o s
—i a. ^
i— o- 3
D O^

"- oo
uo Z>
x £

~H- <*

z>
o_
> ^

1 ^J

Z*T
< 9 :> 4

o \
\

N

Ssv °
!

I

o o o \ 1

o

o
o
CN

o
m

o
o

o

Q
z
<

o
X

z
o
U
Z>
OS
t—

Z

o
z

a
o
•H
-P
o
M
-P

CD

o

CM

O

U
CU

3

>

-p a X
U
<
5

fi
0)

< O
o o

o
o
o

o
o
CO

o
o
CN

o
o

SHJLNOW-NVW

•30 June 196k IT TM-1U47/000/02

u»

an
gu

ag
e

ag
es

jn
g

u
a

g
e

A
ss

e
m

b
ly
 l

<
B

ot
h

la
ng

u<

C
o
m

p
ile

r
Ic J

< • < M U

V co i

<•

•

<•

<«v

o o

o o o
o o o 8 o

co

o o o
o o o

o
8
CN

sjnon J34ndaio3

>d
3§
a]

T3 CO

M

V 0) 3
0 N CO 0
0 •H 0) A
0 CO 5

0

u
CD
P

M -p 3
S)
0 +> ^ u •H O

l/l ft <*H O

0 -O
0 c CM 03 II

10 0 0 t>
tSI u >,
D a cd
O 0 3 4)

F£ •H a* M
p CO CD
0 1 A

0
0

c
0 1 P

CO

cd
0)

>
X

•"J
0

a) r-l
r-l

D CO CO aj
3

1/1 -P +
C •d cd

4) on
0) .H? a> •

0 c t> > -4-
0 • —

•H t»
<r> 0

co
M fc 1

0 3 a)
> O II •

u
w O

P K4
1) CO a n

E p G •H CO
0 D p O 3
0
CM z i P

13 2 O A3
0 cd •H P
0 H

P
0

P
cd a
P.-H • r-l a*

00 cd
0

V CO
a

0) t* 0
O ft D G -H
O 5. A3 •H P
1 P •p 0

•H 3 2 fc CD
> CO P
O t> a

A3 ^ a
CO •H

M £8
i-t

X A3
2 • O

a
V
ft a 1
ft 0
< ft K

30 June 196h 18 TM-lMf7/000/02

Appendix II to illustrate what could be done with a greater
quantity of more reliable data. In this case, the resulting
equation suffers from insufficient and unreliable data, and would
be useful for estimating computer time only if an accurate means
were available of estimating number of instructions.

In the case of the relationship of number of instructions to man
months, the curves in Figures 2a and 2b are eye-fits and should
be interpreted only as a first approximation, particularly since
the data depicted were not entirely consistent. To be valid,
these plots comparing data require clear definitions of program
products, performance characteristics and quality measures. For
example, in measures of number of machine language instructions,
program systems should be classified as to the percentage of
instructions derived from subroutines and from previous versions
of the same program system.

(2) Number, types, and frequency of inputs and outputs to
the c omputer(s).

In addition to influencing the cost of the program, the number
and variety of inputs and outputs to and from the computer may
be a clue to the size of the program needed. In any event, the
greater the number of inputs and outputs, the greater the expense
of both the operational and the program design. Increased input-
output capability implies increased capability of both equipment
and programs, and correspondingly, the increased analysis to insure
compatibility with the input-output terminals.

Other input-output factors that influence cost are the rate of
arrival (or departure) for messages and the amount of format
conversion, i.e., pre- or postprocessing, needed. Higher rate of
input-output is more costly, and obviously the more processing
required for input or output data, the greater the cost.

(3) Extent of innovation required in the program system;
that is, the degree to which programs are similar in
nature to those previously written.

If programs to be developed will be similar to previously
developed programs, such as in the mathematical, clerical, or
logical areas, and this similarity is recognized, the cost of
programming the new system will clearly be less. For example,
the availability of reliable, well documented utility and support
programs will help reduce costs. The primary point is that the
development of new program applications will result in increased
costs.

30 June 1964 19 TM-lM^/000/02

One approach to the development of new and unique programs is to
test feasibility with experimental or prototype programs. Although
it is costly to design and test a prototype or experimental program,
this reduces the impact of innovation and so provides savings in
over-all program design. It also clarifies requirements and
operating procedures, and program development techniques, enabling
the operational program to be developed with more confidence and
fewer errors. The quantitative trade-off relationship between
the cost of a prototype and the savings that result from it is
not known.

(4) Number, types, and quality of publications
and documentation for both customer and internal use.

Documentation is an inherent part of programming, though its
cost and extent are often underestimated. The experience data
shown in Figure h suggest that the number of pages of formal
documentation is linearly proportional to the total number of
instructions in the program.

Some rules of thumb used to estimate the amount and cost of
documentation are as follows:

(a) Approximately 10.5 pages of documentation are needed per
thousand lines of program code.

(b) A drafting rate is 3 to 5 pages (750 to 1250 words) per
man day.

(c) Technical review rates of 20 pager, per man day are average
and may range to 50 or 100 pages per day.

(d) Typing rates average 15 to 20 pages per man day.

(e) Illustrations in line drawing (e.g., flow charts) average
approximately kO pages per man day, and revision of these,
up to 80 pages per man day.

(f) Duplication of a large document is at a rate of about
25,000 pages per man day; this rate varies considerably
with the process.

From these rules of thumb, a reliable prediction of documentation
costs is feasible, given reliable knowledge of the over-all size
and scope of the project in terms of documentation requirements.

30 June 1964 20 HM-lWr/OOO/02

7,000

6,000

c
o 5,000
-*- p

E
D
o

4,000

o

0) 3,000

2,000

1,000

100 200 300 400

Number Machine Instructions (Thousanas)

500

Figure k. Number of Pages of Contract Required Documentation

Versus Program Size

Data here are for five program systems. Pages of documentation refer
to the number of contract pages of documentation actually produced.
The graph suggests that program size in this range and number of pages
of contract-required documentation are linearly proportional; it also
illustrates the recognition of documentation as a major integral part
of programming for command and control systems.

30 June 196U 21 TM-IUU7/000/02

(5) Extent of complexity of the data-processing functions.

Complexity of functions is difficult to define. It appears to
be associated with program design rather than coding, in that
some programs have certain qualities that make them more difficult
to analyze and design than others of equal length for the same
computer. Several attempts have been made to define a so-called
"complexity index."* Because most of the weightings in such
indexes are somewhat subjective and because the elements of
complexity themselves are hard to define, no generally agreed
upon standards currently exist. Some of the elements of complexity
might include the following:

(a) Degree of interdependence of subprograms.

(b) Number of decision points.

(c) Number of input-output requirements.

(d) Number and diversity of information-processing functions.

Another classification scheme has been suggested that assumes
that the data to be processed could be scored by assigning
measures to the following:

Class Functions

Clerical Store, retrieve, reformat
Synoptic Reduce, classify
Predictive Predict, forecast based on pre-established

criteria
Directive Decide, based on pre-established criteria and

summing the product of class weight times the
number of functions to be performed in each case.

A major problem with these schemes for assessing complexity is
that they require that much of the program design be complete, or
at least known, before they can be applied. In addition, since
relation of statements of programming requirements to the complexity
of programs remains to be done, the scheme sketched above may be
of little value in helping to estimate costs early in the concep-
tualization nrocess.

*For example, the work performed by Diebold Associates for NAVCOSSACT and
the STEPS (STEPS: Staff Training Exercise for Programming Supervisors,
R. Boguslaw, H. Richmond, and W. Pelton, System Development Corp., TM-321,
25 February, 1959) exercise both have described such indexes.

30 June 196^ 22 TM-lU47/000/02

To isolate and define the costs of complexity, an experiment could
be designed that would subject programmers with similar backgrounds
(experience and skill) to a variety of programming requirements
that had been ranked by panels of "experts" in their degree of
complexity. Measurements could be taken on the time required by
both men and computer to design and develop the programs. (A
shortcoming of experimental approaches to answer many of these
questions is that the cost of such tests might be prohibitive.)

(6) Degree to which the following program design charac-
teristics are recognized and must be incorporated:

(a) Maintainability--the ease with which program errors can be
detected and corrected.

(b) Changeability--the ease with which new functions can be
incorporated into the program.

(c) Usability—the ease with which personnel other than
designers can use the program.

(d) Flexibility—the ease with which the program can be used
for other purposes with only slight modification.

These somewhat arbitrary characteristics of computer programs are
often implied in the program requirements, but not explicitly
defined. When programmers consciously attempt to incorporate
these characteristics into the program, there may be an increase
in the cost of the design, but the resulting program, in the long
run, may be less expensive to operate and maintain. This factor
is characteristic of the difficulty both users and programmers
have in describing the performance characteristics of a computer
program. An analysis of existing systems might help define these
characteristics and contribute to the adoption of standards to
aid program design and production.

(7) Extent of the constraints on program design.

The more constraints upon the program design, the more costly it
will be. There are a number of ways that program design is con-
strained, requiring a more sophisticated or clever approach, e.g.:

(a) Computer storage capacity.

(b) Number of input-output channels.

(c) Timing of internal transfers.

(d) Extent to which the program must operate in a real-time mode.

30 June 1964 23 TM-]M7/000/02

The exact effect upon costs of various types of constraints is
currently unknown; experimentation might help determine such
effects. For example, it would be possible to determine how much
longer it would take to do a given program under the constraint of,
say, 1000 primary memory locations versus one of 2000 locations.

(8) Number, size, frequency, and timing of program design
changes.

Program design changes are those that occur after the completion
of the program design phase. These changes result from changes in
either the operational functions themselves or the methods of per-
forming them and almost always increase programming costs. Some
changes are simple and localized, while others have a "ripple," or
"snowballing" effect,requiring, in addition to the change in one
program area, changes to interfacing and interrelated programs.
Every change requires examination to determine whether it has this
"ripple" effect. Costing a change is similar to costing a new-
program, except that more details are available and the problem is
to determine how much has to be redone; e.g., retesting and document
revisions are almost always necessary. Unfortunately, very little
data exist on the cost of changes.

(9) Extent to which data for the data base are available,
or data collection is required.

The availability of data for the data base or, at least, the
availability of the format of the data (e.g., categories, ranges,
maximum and minimum values) will allow data base design to proceed
early in the design phase, and thereby minimize the expense of
later redesign if the data are not immediately available. Ideally
most of the data should be available before program design begins,
although data collection continues throughout the implementation
process because of changing system requirements and new component
specifications. If the data are not provided by the customer, and
the programming contractor assumes the responsibility for data
collection, a substantial cost must be anticipated. Similarly,
classified data require special handling procedures that increase
the cost. Because of the rapid rate of change of system data, the
user must identify the appropriate sources of information, and
both the programming contractor and user must provide and partici-
pate in a procedure for certifying the validity of the data and
for concurring on formats and data elements. An estimate of the
percentage of data that is available can usually be made early
during the planning.

30 June 1964 24 TM-1M7/000/02

(10) Number of entries (total size) for the data base,
the number of different types of data needed for it,
and the extent to which each can serve many programs
or subprograms.

The greater the total amount of data and number of types of data
to be handled, the greater the cost. Once the content and struc-
ture of the data base are known, an estimate of storage require-
ments can be made. This should include recognition of possible
ways to store data, e.g., a determination of the number of central
tables containing common data used by many subprograms, and
isolable tables containing data used by only one program. The
central tables, of course, are most desirable in terms of reducing
storage requirements, although their use may require additional
programming. The number and variety of entries in the data base
may give some indication of the complexity of the data base design
and the extent of the data dictionary required in addition to the
direct cost relationship stated above.

(11) Efficiency of the programming language and the
compiler or assembler.

Although the relative merits of various procedure-oriented or
symbolic assembly languages have been discussed at length, they
have been subjected to relatively little systematic, quantitative
research. The hypothesis that procedure-oriented languages (POL)
are easier to learn and easier to use, and allow greater produc-
tivity (i.e., instructions per man month) in the coding and test
phase has not been proven conclusively, but can be borne out in
some specific cases. For example, the survey in TM-903* indicates
that an average productivity rate for command and control programs
using symbolic programming languages is slightly less than 200
machine language instructions per man month, while data collected
on certain programs written in JOVIAL and NELIAC reveal productivity
rates of about U50 machine language instructions per man month.
Possibly offsetting this gain is the suggestion that the number of
machine language instructions generated by compilers to perform a
given set of logical functions will be greater than if they were
prepared by an assembler. Other suggested advantages of POL are
reduced costs for reprogramming new machines and increased manage-
ment understanding. We have no data on hand to help confirm or
deny these advantages, but they must be traded off against the
possible cost of developing and maintaining these languages and
their compilers if it is not possible to use one in existence.
Although previously high, the development costs of compilers seem

*Heinze, et. al, op_. cit.

30 June 1964 25 aM-lM7/000/02

to be decreasing, apparently by use of improved program design
techniques and "bootstrapping," i.e., using a compiler and POL
to develop a new compiler, usually for a different machine.

In addition to the productivity rate measured in instructions per
man month, other measures of the efficiency of the programming
language and compiler are the computer time necessary to compile
the source program and the computer time required to execute the
object program. A comparison of these parameters with the symbolic
assembly process reveals that the increased productivity of the
POL has been traded off against the cost of increased computer
time. Current compiler developments have had, among other goals,
that of reducing compilation time. New designs indicate success
in meeting this goal. Also, increased time for compilation may
be more than offset by decreased computer time for debugging.

The Air Force Assistant for Data Automation (AFADA) conducted some
tests, primarily to provide a basis for adopting a standardized
procedure-oriented language rather than to assess the advantages
of POL's in comparison with symbolic assembly languages. These
tests were designed to compare the performance of nine POL's.
Nine programmers, each using a different POL, programmed the same
problem and their programs were compared to one written in a
symbolic assembly language. While criticism was leveled at statis-
tical significance and experimental design of this test, because
no attempt was made to measure programmer variability, the results
indicated that a good machine-oriented language can produce a more
efficient program (i.e., with fewer machine language instructions
and shorter execute or operating time) at greater programmer
expense than the average POL.* More study and/or tests are needed
to develop hard data on cost effectiveness of programming languages.

The question of efficiency of the language is more often implied
in discussions of the compiler, but can be examined explicitly.
For example, ease of use may determine the number of errors
produced and the extent to which debugging can be done in source
language to help to reduce the cost of using the language.

*0ther work on language standardization is documented in RAND Memorandum
RM-3W*7-PR> Programming Languages and Standardization in Command and
Control, J. P. Haverty and R. L. Patrick, January 1963, and TM-688/OOO/OI,
Computer Programming Standards in Command and Control, 15 February I962.

30 June 1961+ 26 TM-IU7/OOO/02

(12) Extent to which programming tools are available and
usable.

In general, the availability of reliable programming tools for
the program development staff tends to reduce program development
cost. Some examples of useful aids are:

(a) Data tools, such as data description languages, table
generators, table design programs and format and list
description tables.

(b) Program modification tools, such as design change, parameter
change and error-correction routines.

(c) Control tools, such as accounting or bookkeeping routines,
interrupt and restart programs and error-detection techniques.

(d) Special tools, such as hardware diagnostic routines, data
base manipulation procedures, and loading and editing
techniques.

To get a rough measure of this factor, a complete list of tools
needed could be used to find percentage of tools available.

As mentioned earlier, if there is a need to develop these tools,
this cost must be traded off against their usefulness as measured
in man months of labor and machine time saving.

(13) Extent of the completeness and clarity of the
system test and acceptance test requirements.

The objective of system test is to identify and eliminate all
component interface problems and to verify that the total system,
operating in a live environment, performs in accordance with the
operational specifications. Beginning after the completion of
operational design, development of a comprehensive system test
design is a costly and complex process and requires participation
of the customer and all component developers. While actual conduct
of the system test may represent a small effort for the programming
contractor, the analysis of test results is the most difficult and
costly part of the process. For example, component failures are
often detected, but insufficient information exists to identify
and correct them. Furthermore, the components may be the responsi-
bility of separate subcontractors, which presents a difficult and
costly coordination problem. Extensive requirements for acceptance
tests and demonstrations result in increased costs because of
extensive preparations, planning and coordination.

30 June 1964 27 TM-IH7/OOO/02

B. THE RESOURCES WITH WHICH TO DO THE JOB

This section addresses the influence of the principal resources, data-
processing equipment and personnel, upon cost.

1. Data-Processing Equipment

The Data-Processing Equipment category includes cost factors
associated with the hardware required to produce and test a
program, including all input, output and peripheral equipment.

The lack of techniques* for analyzing computers and the rapid, con-
tinuous development of new computer hardware preclude making state-
ments about the effect of hardware upon programming that will be
valid for more than a few years. For example, a recent comparison
between a typical 195^- electronic processing system and a typical
1962 system showed that internal memory capacities have increased
over 100 times, add times have decreased by a factor of 30, input-
output speeds have increased by a factor of approximately 11 and so
on. Current equipment systems use components that were not available
several years ago, e.g., cathode ray display tubes and disc memories.
Thus, any analysis to identify the long-range effects of hardware
upon programming cost should include time as a variable. However,
the identification of cost factors below accounts for some of the
variation in equipment capability and also considers factors that
appear to be meaningful regardless of changes in equipment design.

(l) Number of hours per day of computer availability.

A commonly held notion is that the more hours per day the computer
is available to programmers, the lower the over-all cost of the
programming effort. Certainly, it is to be expected that
greater computer availability will cut down the total number of
man months of programming time required. And if computer time
is very inexpensive compared with programming time, it obviously
pays to strive for the most hours of availability.

Among the considerations in determining the number of hours per day
of computer availability for a given effort are the following:

(a) Number of shifts per day of computer operation.

(b) Time required for preventive maintenance.

*0ne such technique was reported on at the 196k Spring Joint Computer
-Conference: "The Use of a Computer to Evaluate Computers," D. J. Herman
and F. C. Ihrer.

30 June 196^ 28 TM-lVn/000/02

(c) Unscheduled downtime (reliability).

(d) Competition, or number of other computer users
sharing the machine.

A new development that promises to reduce some of the competition
for programmer use of the machine is time-sharing, a technique
that enables several people to work on the computer at a given
time, each with the feeling that he has complete command of the
system. The effect of time-sharing on programming efficiency
and costs has yet to be analyzed.

Delays in the delivery of the hardware may lead to additional costs.
For example, one computer arrived four months after the scheduled
date, requiring negotiations for use of, and programmer travel to,
substitute machines, for testing. In another case, programmers had
difficulty getting machine time on the designated computer and had
to do most of their testing on an alternate machine. Whenever this
occurs, particularly with alternate computers of slightly different
configurations, the over-all programming effort will take longer
and be more costly.

(2) Extent of capability of the computer and its
suitability for the job to be done.

Although greater capability costs more, from the over-all system
point of view, it may considerably decrease the programming time
required. For example, larger memory capacities make programming
easier. Among the capabilities to be considered here are the
following:

(a) The power of the order code.

(b) Capacity and access time for primary and secondary memory.

(c) Operate time.

(d) The speed and availability of input-output equipment.

(e) The number of index registers.

(f) Multiple- versus single-address.

Few data exists to aid in estimating the effects of these factors.
Although it has not been done to date, data could be collected
concerning the relative cost of programming the same jobs using a
variety of machines and configurations. One would expect that the
computer manufacturers would be vitally interested in collecting
such information.

30 June 196k 29 TM-JM7/000/02

(3) Extent to which the operation of the computer and
peripheral equipment is reliable, well tested and
well documented.

Excessive computer downtime lengthens the total programming man-
months "by more than the downtime itself because of the disruption
of schedules and plans. This requires effective, timely, on-site
emergency and preventive maintenance.

If the operation of either the central computer or peripheral gear
is not well documented, it is difficult for a programmer to know
whether errors in his program result from machine characteristics
or from his own mistakes in logic. Sometimes delays are encountered
in contacting the equipment manufacturer to learn about equipment
characteristics that should be available in documentation. Documen-
tation that is inaccurate or misleading is as bad or perhaps worse
than no documentation.

(h) Number of automatic data-processing components
being developed concurrently with the program.

Automatic data-processing components include the computer and all
those pieces of equipment that can be recognized, addressed or
controlled by the computer program. If any of them are not avail-
able at the time the programming starts, but rather are being
developed concurrently, it is necessary for the programmers to
write their programs based upon equipment specifications that may
change as the design of the components changes throughout their
development process. Additional costs are incurred in maintaining
this communication channel with the equipment developers. Unless
these changes are communicated to the programmers accurately and
quickly, the final programs will not operate satisfactorily, and
the program implementation will be delayed.

(5) Number of different computers for which programs
are being prepared.

If the system includes several computers from different manufac-
turers or with slightly different configurations or requirements
for communication between them, the programming effort will be
more costly, because programmers must become familiar with different
hardware characteristics and additional work must be done to ensure
compatible operations.

30 June 1964 30 TM-IH7/OOO/02

(6) Number and types of displays used.

It is probably safe to say that the addition of a variety of
display devices (e.g., wall display, individual display), par-
ticularly those requiring complex input descriptions, will
increase programming costs. There is information on the extra
effort required for programming various types of displays, but
these data have not been collected or analyzed.

(7) Extent to which adequate RAM support will be
available.

If adequate keypunching and other EAM support is not available,
and must be subcontracted to outside agencies, this adds to the
cost of programming, and introduces time delays in the testing
schedule.

2. Programming Personnel

This category includes cost factors resulting from the
direct labor needed to develop a computer program.

One measure of cost proposed in this paper is man-months. Clearly,
the quality of the personnel and the working relationships among
them will influence the number of man-months required to perform
a task of any given size. The factors below reflect consideration
of this influence:

(l) The types and quality of programmers.

This is certainly one of the largest contributors to the over-all
cost of a computer program. The nature of the job determines the
appropriate types of personnel and it is likely that the proper
mix will vary somewhat from job to job. In most organizations,
programmers are ranked in several classes by such titles as coder,
junior programmer, senior programmer, system analyst, and so forth,
reflecting various levels of skill, experience, and ability to
assume responsibility.

There are three particularly important types of programming
experience:

(a) Experience with the particular computer—The more experience
a man has with the particular machine for which the program
must be developed, the more familiar he is with its capa-
bilities and the less time he requires to program and test.

30 June 1964 31 TM-lV*7/000/02

(b) Experience with the particular language--Programming
languages differ in their suitability for various programming
efforts. Experience with a procedure-oriented language, such
as JOVIAL for command and control, or COBOL for business
systems, eases the job for the programmer and thus requires
a smaller effort (i.e., number of man months).

(c) Experience with the particular application—If the programmer
has experience with the particular type of system being
programmed, and the particular problems of the user, fewer
man months will be required for the new effort.

Although the assessment or measurement of quality or skill requires
more than consideration of the number of man years of experience,
reliable methods that permit effective comparison of programming
personnel have not been developed. Several efforts to attack this
problem are underway. For example: At the University of Southern
California, a study sponsored by the Navy is seeking to develop
optimal personnel selection and classification procedures by
analyzing the job of the computer programmer and developing
criterion measures of performance.*

(2) Number of man months of programmer training required.

The high demand for programmers makes training necessary as a
support activity for program development. The effect of programmer
training upon cost may take the form of a U-shaped curve. That is,
for any given task, there is an optimum amount of training that
the programmers should have in the particular language and the
application. More training than the optimum merely adds man months
to the project without producing a commensurate return, while
insufficient time in training presumably leads to errors and con-
fusion in the programming.

There are many components of the cost of training. First, of
course, is the actual time spent by the trainee in class instead
of doing productive work which depends partly upon the experience
and quality of the trainees and partly on the nature of the
programming work to be done. Secondly, the time spent by the
instructor in preparing for the class may be very costly, particu-
larly if the information to be taught is inadequate, poorly

*Rigney, J. W., R. M. Berger, and A. Gershon, Computer Personnel Selection
and Criterion Development: I. The Research Plans, Los Angeles Depart-
ment of Psychology of the University of Southern California, February 19^3 •

30 June 1961* 32 TM-llj47/000/02

written or disorganized, as may be the case in courses for
computers that are still in the development or prototype stage.

Data that exist on training costs in the personnel records of
programming organizations have not yet been collected or analyzed.
To study the cost-effectiveness trade-off, it would be possible
to conduct an experiment in which programmers with similar back-
grounds would be divided into a number of control groups each of
which would receive a different amount of training after which
each group would produce the same program(s). The cost of train-
ing could then be compared with the cost (i.e., man months,
computer hours) saved as a result of the training.

(3) Number of programmers to be assigned to a given
function or task.

A study to determine the optimum work group size for each type of
programming effort has not been conducted. Some guidance is
available from the Controller's Institute, however, which reports
that "the general trend seems definitely toward the smaller units,
individuals, two- or three-man teams, or an arrangement where two
programmers work individually and then review and check each
other's work."* Outside the programming field, Ellis A. Johnson
has stated that the minimum time of accomplishment in research
and development occurs at a work group of between four to seven
people.**

One practice that appears to have some success is the assignment
of a clerk or trainee to assist the more experienced programmers
in performing some of the tedious work. Also, the deliberate
assignment of test responsibility to another individual or group
appears to have had some success.

Experiments could be designed and conducted to determine optimum
work group sizes; however, the experiments might be difficult to
control, and costly.

*Business Experience with Electronic Computers, New York Controller's
Institute Research Foundation, 1959, P« HI.

**Johnson, Ellis A., "A Proposal for Strengthening U. S. Technology,"
in Operations Research in Research and Development, edited by
Burton V. Dean, New York, John Wiley & Sons, 1963, P- 3^-

30 June 196k 33 3M-lWn/000/02

(k) Policy of obtaining and phasing of personnel to
staff a new program development.

There are essentially two ways that personnel can be acquired for
a new programming effort; they can be hired or they can be trans-
ferred from other jobs. From an over-all organizational viewpoint,
the transfer of personnel from another job may involve a hiring
cost to replace them. Depending upon the skill classification
involved, hiring costs may be several hundred dollars or several
thousand dollars per person.

In addition to the cost of obtaining personnel, there may be
additional cost from poor scheduling or phasing of the project.
Usually there is a gradual build-up, a peak and a phasing out of
personnel in each of the activities of program implementation.
With poor scheduling, there may be idle hands when it is too early
to use them effectively or there may be an inadequate number of
personnel at a critical juncture.

(5) Rate of turnover.

This factor is the percent of the work force terminating and being
replaced per unit time. It affects cost in that the terminations
or resignations must be replaced by either new-hires or transfers--
usually people who are less experienced in the given task than the
ones who left. Data concerning the percent turnover are usually
available from personnel departments.

Again, an experiment to determine the effect of changes in
personnel during a programming effort could be designed. Such
experiments have been conducted for other types of task groups,
but this type of research is still on the frontier of psychological
and organizational research.

C. THE ENVIRONMENT IN WHICH THE WORK IS DONE

Factors that arise as a result of the available facilities and condi-
tions under which the work is to be done are included in the following
categories concerned with procedures, environment, facilities,
services, indirect labor and overhead factors.

1. Management Procedures

The Management Procedures category includes cost factors
associated with the plans, policies, practices and review
techniques used in the administration of all phases of
program development.

30 June 1964 3^ TM-lUVr/OOO/02

A general comment can be made regarding the majority of factors in
this category. The cost of designing and instituting clear-cut
procedures for the use of the computer or the submission of progress
reports often seems high at the outset; "but its true cost and value
must be determined by comparing the cost of the plan with the cost
of not having a plan or procedure. Unfortunately, it is extremely
difficult to determine the cost of having a plan, and probably im-
possible to determine the cost of not having one. Nevertheless,
experience on past contracts indicates that well planned projects
enjoy higher productivity rates.

(l) Extent of use, maintenance, and monitoring of
effective management plans within both the
customer's and program developer's organizations.

This factor simply emphasizes the fundamental management principle
of documenting plans and procedures to decrease costs by eliminat-
ing uncertainties concerning responsibilities and the source of
decisions. Among the procedures and plans needed in program
development are the following:

(a) Communication with other agencies.

(b) Concurrence on design specifications.

(c) Cost control.

(d) Management control in the form of PERT or Gantt charts.

(e) Document control (e.g., design file).

(f) Standards for coding, flow charts, etc.

Similarly, the customer must have a well defined management concept
or plan for developing the system in which the programs will be
embedded. This plan must include a clear statement of job
responsibilities for all agencies involved, and a well defined
channel of communication for all organizations involved. Some
cost reduction stems from designating official representatives
as points of contact to ensure the correct and rapid transmittal
of information.

Perhaps as important as the plans is the reporting system that
ensures that the plans are followed. Although not known in a
numerical sense, it is a logical hypothesis that the cost effective-
ness or value of an internal management reporting system follows a
U-shaped curve (i.e., an optimum number of internal reports will
yield a decreased total cost). Figure 5 displays this hypothesis
of cost and value for internal reports. On the other hand, the cost
of external reports, which are usually for the customer, simply
increases the total cost linearly with the number of reports with
little or no value to the contractor.

30 June 196k 35 TM-IM7/OOO/02

Dollars

Value

Total Cost

Number of Management Reports

Figure 5. Hypothetical Relationship Between the Total Cost

of Management Reports and the Resultant Value to

the Programming Contractor

30 June 1964 36 TM-IM7/OOO/02

(2) Extent of formalized procedures for use of
the computer facility.

An example of this factor is the policy set by management concern-
ing the distribution of computer time to each programmer. A
number of diverse theories exist concerning the effect of this
factor on programming cost. For example:

(a) Maximum desk-checking and a minimum number of computer runs
will minimize cost.

(b) A trade-off exists between desk-checking and computer testing
such that an optimum number of computer runs per day will
minimize total cost. Some data suggest that the optimum
number may be two or three.

(c) An unlimited number of computer runs per day will produce a
program in the shortest elapsed time.

An attempt to use this third theory and simultaneously realize
maximum use of the computer facility is one basis for the concept
of computer time-sharing. There seems to be little evidence or
data to strongly support any one of these theories, and this
factor is ripe for experimentation and further study.

A second example of computer usage theories are the two philosophies
of program testing:

(a) Parameter test, or debugging of the subprograms, should be
as complete and thorough as possible before assembly test,
where several subprograms will be tested as a unit.

(b) Parameter test should only be done in a gross fashion, and
assembly test should be entered into as quickly as possible
to locate more errors in a shorter period of time.

A third example of formalized procedures relates to the considera-
tion of open- or closed-shop operation. While closed-shop operation
may minimize computer time for a given job, open-shop operation may
minimize programmer time. Therefore, some trade-off exists between
the two, and the formalized procedures to use the computer should
take this into account.

(3) Extent to which there is a well defined and
controlled system change procedure.

30 June 1964 37 TM-lM*7/ooo/02

The fact that systems are developed in an evolutionary way is
readily accepted, but effective techniques for accommodating
changes during program development are not well known. If
provisions for change haven't been included in the original
design, even a small change, such as the addition of a few sensors
in a command and control system, may necessitate extensive re-
programming, retesting, and rewriting of documents. During
development, frequent design changes lead to heavily patched
programs that :aay not run efficiently. In the extreme, such
programs may eventually have to be rewritten entirely in the form
of a new model. Regardless of their impact on the program system,
changes demand continual appraisal and hence, a mechanism and come
effort devoted to these examinations.

(h) Extent of an error-reporting and -correcting
procedure.

Because of the high degree of interdependency among subprograms
in a large program system, an error in one subprogram may easily
affect many others. An effective error-reporting procedure
ensures that all programmers who may be affected by changes and
program corrections are notified. In the absence of such a
procedure, program changes may be made late in the development
cycle when they could have been made earlier at lower cost.

(5) Extent of contingency plans in the event that the
computer is overloaded or otherwise unavailable.

Often the computer may be unavailable for any one of a number
of reasons (e.g., down for unscheduled maintenance, other user's
priority, failure to deliver on schedule, etc.). In this event,
a plan that designates the availability of an alternate computer
(e.g., that of a service bureau or of another contractor) will
save time that would be lost in waiting for the computer to become
available or in searching for an alternate computer.

(6) Extent o2 quality control that is exercised
during testing (e.g., reliability requirements).

Once more, no clear relationship exists between the cost of
instituting quality control procedures and the penalties for
having none. Poor-quality programs (e.g., of high error content)
are more costly to install and maintain. The hypothesis of the
U-shaped curve may also apply to the extent of the quality control
procedures implemented in the programming process (see Figure j).
The question of definition of quality has been discussed under
program des ign factors.

30 Juno 196k 38 TM-]M7/000/02

Total

Cost

Increasing Quality Control Procedures

Figure 6. Hypothetical Relationship Between Total Cost of Program

Implementation and Increasing Quality Control Procedures

30 June I96U 39 TM-IH7/OOO/02

Development Environment

The Development Environment category includes cost factors
resulting from relationships with external organizations,
including customers and contractors.

In general, problems in the relationship between a contractor
for program development and the customer arise from insufficient
understanding of the magnitude and scope of information-processing
system development, the role of data processing, and the program
developer's need for detailed requirements. As a result, the
interdependencies that require coordination, concurrence, and
data transmittal may lead to situations that increase cost of
the program development and/or reduce quality of the products.
The following factors are both symptoms and causes of such prob-
lems, and as such are somewhat overlapping and interdependent.
It is significant that the majority of these factors will not be
known at the contract proposal stage, but will be learned only
after a contract is awarded.

(l) Number of agencies with which the programming
contractor must deal and their level of experience
with system development.

Coordination and concurrence seem to multiply as a function of
the number of agencies with which the programming contractor must
deal. Such agencies might be the (a) user or customer (e.g.,
NORAD, ADC), (b) contracting agency (e.g., MITRE, ESD), (C)

system manager (e.g., Aerospace, MITRE), and (d) other subsystem-
developing agencies. Deliberate plans for coordination may
reduce its costs. Also, the more experienced the various
agencies are in information processing system development, the
less costly will be the coordination, with respect to program
development.

When the program developer and the user are unfamiliar with one
another's procedures, they should plan to educate one another.
The cost of briefings and meetings to educate each organization
should be considered an investment early in the implementation
process to eliminate costly problems later.

The extent of system development experience of the user personnel,
e.g., military, is important. Although it is difficult to
evaluate its cost-contributing effect, this factor implies that
increased costs stem from assignment of inexperienced user
personnel to develop computer-based systems. In many cases, the
assignment may be made deliberately so that personnel can gain
experience.

30 June 1964 kO TM-]A47/000/02

Finally, a factor that is both important and readily measurable
is the number of other agencies involved directly in program
development. Several organizations (contractors) may participate,
and increased costs will stem from satisfying the need for
increased coordination and communication.

(2) Average number of days and effort required
for concurrence.

Achievement of understanding of the projected operational design
of the system and the formal agreement to it by the user is known
as concurrence, which triggers the major effort to realize the
program system. Indecisiveness in concurrence on design plans
and specifications, or ignorance of responsibility for concurrence
by the user leads to uncertainty, loss of time, and perhaps
repetition of costly program design work that was underway during
the period of delay. The program developer may undertake various
tasks to develop the understanding needed and the schedule will
contain an interval for review of specifications, but many times
inadequate attention is given to the review and scheduling.

(3) Travel requirements.

Significant expenditure in a system development project may be
for trips required for briefings and conferences for these
purposes:

(a) Information and data gathering.

(b) Training and familiarization.

(c) Concurrence on requirements and design.

(d) Problem solving.

Also, travel or relocation may be necessary because the programmers
are required to work at specific sites either because of customer
requirements or computer availability. A remotely located computer
facility will also increase costs because of communication problems
and inconvenient access. Although this problem can be somewhat
ameliorated by the use of remote input devices such as data link,
data phone, or teletype, relocations may often be necessary.

There is a strong tendency to underestimate travel or to reduce
it for economical or political reasons. If adequate funds are not
available for travel, delays in getting information or concurrence
may make the job quite costly in terms of work that is performed
incorrectly and must be corrected later. The total amount of
travel is a function of the number of sources of information,

30 June 196k Ul 1M-l^T/000/02

number of associated developmental agencies, geographical location
of customer, geographical decentralization of operations, computer
location, and other factors.

Also, an obvious hut sometimes overlooked fact is that when
personnel are travelling, they are not available for activities
such as program design or test. Furthermore, such trips often
require preparation and subsequent trip reports, so that more
time is taken away from the activities that nominally constitute
program development.

(4) Extent to which delivery dates for required
programming tools are reliable, and correspondingly,
the amount of pressure caused by a tight schedule.

These two factors reflect the concreteness of the schedule and
the pressure it may impose upon the programming personnel. If a
schedule of delivery dates for required tools is not reliable,
the developer can expect to experience costly delays. He can
expect his schedule to slip on a day-for-day basis with the
slippage in the delivery of the required tools. This factor,
combined with the possibility of an already crowded schedule,
will cause total costs to increase nonlinearly if overtime is
necessary to maintain the original schedule.

(5) Extent to which the computer is operated by
another agency.

With respect to a development of a particular program, ideally,
the developer should operate and control the computer facility.
If not, increased costs may result from insufficient computer
time, undesirable distribution of scheduled hours, and delays
due to inconveniently scheduled equipment modification.

Facilities, Services, and Supplies

The Facilities, Services and Supplies category includes
cost factors related to supplies, physical plant, indirect
labor and overhead.

In most accounting systems, normal overhead and miscellaneous
supplies are covered by a percentage addition to the estimated
direct labor and materials. Such an overhead figure includes
normal costs of office space, stationery, pencils, top administra-
tive management, personnel services, plant maintenance, and so
forth. However, in a large-scale programming effort, a number of
unusual expenditures might fall into this category and have an

30 June 1964 42 1M-1U4T/000/02

effect on cost in excess of that represented by the expenditure
itself or by the allowances made in an average overhead/burden
rate.

(1) Number of computer operators and EAM personnel
required.

In using man months as a cost measure, we refer specifically to
programmer man months. Potentially substantial, the cost of
support personnel may be considered overhead and may include the
cost of computer operators, keypunch operators, operators of off-
line equipment and others associated with the computer. Such
personnel provide services for the programmers and free them for
more direct work, and, in addition, contribute to more effective
use of the computer. No data exist concerning the optimum ratio
of such personnel to programmers although it is conceivable that
such a ratio could be determined from an analysis of support
activities and the cost of having programmers perform such tasks.

(2) Number and experience of technical management
personnel, administrative personnel and
technical editors.

Programmers need various types of support to function effectively.
Good management is clearly one of the most important factors.

If available, management personnel with appropriate experience in
information-processing-system development will help reduce cost.
Only intuitive notions exist about the degree to which poor
management adds to cost. For example, poor management may lead
to delays due to poor planning, inadequate coordination of
programming efforts and customer requirements, delays in concur-
rence, or decreased quality of products.

Administrative personnel include typists, secretaries, executive
assistants, and so on. Each organization has its own history of
the most efficient mix of technical and administrative personnel.
For cost computation purposes, figures for the ratio of technical
to administrative personnel are usually available from accounting
departments. Here again, we would expect a U-shaped curve, i.e.,
there is some optimum number of administrative personnel above
which the expenditure for their talents is too costly, and below
which more expensive technical personnel may be required to do
nontechnical chores.

30 June 196k I4.3 TM-]M7/000/02

Similarly, each organization has its own experience in the number
of technical editors required for reviewing program documentation.
Because of the importance of documentation, one current trend is
to identify technical writing as one of the skills or talents of
the programmer. No data exist concerning the degree to which
assistance from a technical editor frees the programmer for other
tasks or prevents ambiguities and errors from appearing in documen-
tation.

(3) Cost of special simulation facilities, computer
room facilities or special office equipment.

Installation of a new computer usually requires expensive site
preparation, e.g., special wiring and air conditioning, false
flooring, space for storage and movement of parts and equipment,
maintenance and test hardware. To estimate this cost, one authority
offers the following rule of thumb: "In practice, a figure of
$100,000 to $150,000 seems sufficient to cover the alterations
required for functionally adequate but unelaborate site preparation
(and air conditioning) costs for a large computer and $50,000 for a
medium-scale machine."*

(k) Number of square feet of new office space
or building required.

To house people and equipment for program development, office
space or additional facilities are required. These additions
may cost more than the normal burden rate for flooring space.
If it is necessary to establish an entirely new facility at some
location, higher costs are encountered because expenses for
janitorial work, maintenance, utilities, taxes and so forth are
not shared with other ongoing operations.

(5) Exceptional costs of graphic arts and reproduction.

There may be exceptional costs of reproduction during program
development, e.g., "polished" brochures and visual aids for train-
ing and briefing purposes, profuse illustrations or very large
distribution and mailing lists. Useful cost data exist on the
expenses associated with various types of reproduction media, but
this type of an estimate must "be made with regard to each particular
new situation.

•^Controller's Institute Research Foundation, p. 52, op_. cit.

30 June 1964 JA TM-144T/000/02

(6) Cost of punched cards, magnetic tape and
other special supplies or equipment.

Programming efforts normally require the same type of office
supplies, stationery, pencils, and so forth, required by other
types of desk jobs. In a small automatic data-processing
activity this cost of supplies, including magnetic tape reels
or punched cards, may he less than one percent. On the other
hand, the investment may develop as time goes by. For example,
one HM 70<?4 facility has a library of approximately 10,000
tapes (2400-foot reels) which cost over $30 per tape—a total
of $300,000. This library is incremented by about 400 tapes/year.
If the estimator feels that the demands for the particular project
will be excessive in this domain in which costs are usually low,
a separate estimate for such unusual supplies should be made.

(7) Cost of special security requirements
(e.g., Top Secret vault).

A requirement for personnel cleared for Top Secret and for
handling highly classified data will undoubtedly add to the
total cost. In addition to the cost of obtaining clearances,
there is the cost of providing secure work spaces and storage
facilities.

30 June 196^ 45 TM-lM*7/000/02

III. CONCLUSIONS AND RECOMMENDATIONS

In this document, we try to establish a base for "getting a handle" on the
problem of estimating costs for the production of large-scale command and
control computer programs. This is an important task because successful
project management depends upon an accurate prediction of the resources
required to perform the project. Also, this research is a challenging
task because it is new, and available literature offers little guidance.

Undoubtedly, more factors were listed here than can ever be integrated into
a practical, feasible cost-estimating procedure. In almost all cases, a
quantitative relationship of the factor to cost is not known. Further, the
factors are very difficult to measure or quantify; they are also highly-
dependent so that even where they can be quantified, their effect upon other
factors must be examined.

Therefore, we consider this listing of cost factors in programming as only
a first step toward the development of a more scientific and hopefully a
more precise method of estimating the cost of programming efforts. Much
more work must be done to determine the significance of each factor and the
relationships among factors, and to identify new ones, before a more simpli-
fied and reliable cost-estimating relationship can be formulated. This work
can be divided into three broad categories:

1. Research and analysis to help define programming activities, skills,
and products more rigorously.

2. Data gathering and cost collection specifically related to the
processes, activities, and products of computer programming.

3. Experimentation and hypothesis testing to arrive at some
conclusion concerning the most cost-effective techniques for
implementing computer programming efforts.

Recommendations for work in these areas are given below:

1. Recommendations for Further Analysis. We need to determine whether
this list does indeed represent the most significant factors contri-
buting to the cost of computer programs. Also, we need to define much
more rigorously the products, skills, and processes with which we are
dealing. Examples of specific questions that merit further examination
are:

(a) What is suitable "unit product" in programming? Alternatives
might include a block of completely tested instructions of a
given size, the entire program system performing a given
function, or a certain class of documents.

30 June 1964 k6 TM-1^7/000/02

(b) Can the programming process itself be logically subdivided into
clearly recognizable discrete functions with start and finish
dates that can be specified?

(c) What exactly do we mean by such terms as program complexity,
flexibility, maintainability, etc.?

(d) How are the cost factors related to each other?

(e) How can programming talent or skill be measured to permit
comparisons?

2. Recommendations on Cost Collection. The collection of cost data for
prediction purposes must be an evolutionary process. Data that are
collected will, when analyzed, suggest the framework of the estimating
relationships and, by the same token, the theoretical relationships
will suggest further data that should be collected. After one iteration,
i.e., the collection of some data to suggest the factors listed in this
document, we can improve somewhat our suggestions for recording costs in
the future. We are cautious because we are aware that recording and
collecting data can be expensive, particularly when a definitive plan
for data analysis and subsequent use of the results is not available.
Nevertheless, we would hope that programming managers would begin to
accumulate at least the following information about their projects:

(a) The number of machine language instructions in the program; also,
the number of operational and utility program instructions
available from other sources at the start of the project and the
number of words in tables and the data base.

(b) The number of man months of programmer effort to design, code,
test and document the program, including first level of supervision.

(c) The number of hours of machine time required for testing and
debugging, and the types of machines used.

(d) The number, types, and timing of important program changes and,
in at least a qualitative sense, the effects of these changes
on the final product.

(e) The types, number of pages, and format of documentation required.

In addition, it would be useful if a log could be kept by a project
"historian" describing certain qualitative attributes such as those
identified earlier in this paper. This section should describe the
data-processing functions of the program system and its relationship
to other program systems and components of the command and control

30 June 1964 kl TM-1U7/000/02

system. It should identify all interim and end products, and associate
them with project schedules. It should also describe the development
environment and the management procedures used. Finally such a log
should record every change in plans as each affects the costs and
schedules and the reasons for each change.

One of the decisions made in preparing these recommendations was the
level of effort to he examined and the level for which data would
be recorded. One could consider three levels for programming: (l) a
total programming contract that may include several different program
systems for different purposes, such as operational, utility, and
support, and may even include several sequenced versions of these same
program systems; (2) an individual program system consisting of a set of
subprograms tied together to perform certain functions and associated
with a particular operational or delivery date; and (3) an individual
program, which might be a subprogram of one of the program systems
mentioned above. The decision was to recommend collection of data for
program systems, or individual programs distinguishable as the smallest
set of computer program instructions (a) whose purpose is defined by
someone other than the programmer, (b) that is delivered to the user
as a package, and (c) that is loaded into the computer as a program
unit or system to achieve the stated objective.

The computer programming products with which to associate cost data are
the tapes, listings, and descriptive documents for the components of
the program system (e.g., operational, executive, utility programs).
Further, cost data can be collected for each of the activities associated
with each product (e.g., analysis, design, coding, test, and documenta-
tion) . Comparison of these data with the orginal estimates will provide
"feedback" to estimators and help them understand why estimates deviate
from actual costs.

Recommendations for Experimentation. There are some factors that can
only be analyzed in a controlled environment. The development of more
precise definitions recommended in (l) above would provide a basis for
examining programming efforts in a pseudo-controlled manner; that is,
such definitions would supply descriptive standards. In the absence of
these definitions, actual experiments might be conducted. For example,
statistically designed experiments could be performed to determine the
cost effectiveness of different programming languages, the relation
between total cost and computer usage (i.e., turn-around time), and the
optimum number of programmers and mix of programming experience for a
particular type of program. The chief drawback to experimentation
appears to be its cost. The lack of standards that permit comparisons
means that an extremely large number of variables must be controlled
and, hence, many cases must be examined.

30 June 196k W TM-1^7/000/02

To the extent that it is feasible, we are following these recommendations
in the continuing research on cost-estimating relationships. For managers
involved in program development, we believe these recommendations are but
the beginning of a systematic way of looking at the management of computer
programming that will enable them first, to determine costs of the various
programming activities more accurately, and then to identify areas in which
cost reductions can easily be made.

30 June 196k k9 TM-IU7/OOO/02

APPENDIX I

LIST OF COMPUTER PROGRAMMING COST FACTORS

Summarized "below for the convenience of the reader is the complete list of cost
factors discussed in this paper.

OPERATIONAL REQUIREMENTS AND DESIGN

1. Extent of innovation in the system, its components, and especially the
automatic data-processing function.

2. Extent to which the programming designer will participate in a determination
of the information-processing needs (i.e., the system and operations analysis,
and the system and operational design).

3. Number, size, frequency, and time of system design changes.

k. Extent of system dispersion and number of interfaces.

5. Number of other components and subsystems being developed concurrently as
part of the system, e.g., in a command and control system, sensor, and
communication subsystems.

PROGRAM DESIGN AND PRODUCTION

1. Number of computer program instructions and the types of programs that must
be produced.

2. Number, types, and frequency of inputs and outputs to the computer(s).

3. Extent of innovation required in the program system; that is, the degree
to which programs are similar in nature to those previously written.

h. Number, types, and quality of publications and documentation for both
customer and internal use.

5. Extent of complexity of the data-processing functions.

6. Degree to which the following program design characteristics are recognized
and must be incorporated.

(a) Maintainability—the ease with which new functions can be detected
and corrected.

(b) Changeability—the ease with which new functions can be incorporated
in the program.

30 June 1964 50 TM-1W7/OOO/02

(c) Usability—the ease with which personnel other than designers can
use the program.

(d) Flexibility—the ease with which the program can be used for other
purposes with only slight modification (e.g., SAGE programs for
air traffic control).

7. Extent of the constraints on program design.

(a) Computer storage capacity.

(b) Number of input-output channels.

(c) Timing of internal transfers.

(d) Extent to which the program must operate in a real-time mode.

8. Number, size, frequency, and timing of program design changes.

9. Extent to which data for data base are available, or data collection is
required.

10. Number of entries (total size) for the data base, the number of different
types of data needed for it, and the extent to which each item can serve
many programs or subprograms.

11. Efficiency of the programming language and the compiler or assembler.

12. Extent to which programming tools are available and usable.

13. Extent of the completeness and clarity of the system test and acceptance
test requirements.

DATA-PROCESSING EQUIPMENT

1. Number of hours per day of computer availability.

2. Extent of capability of the computer and its suitability for the job.

3. Extent to which the operation of the computer and peripheral equipment
is reliable, well tested, and well documented.

k. Number of automatic data-processing components being developed concurrently
with the program.

5. Number of different computers for which programs are being prepared.

6. Number and types of displays used.

30 June 1964 51 TM-1^7/000/02

7. Extent to which adequate EAM support will he availahle.

PROGRAMMING PERSONNEL

1. Types and quality of programmers.

2. Number of man months of programmer training required.

3« Number of programmers to he assigned to a given function or task.

k. Policy of obtaining and phasing of personnel to staff a new program
development.

5. Rate of turnover.

MANAGEMENT PROCEDURES

1. Extent of use, maintenance, and monitoring of effective management plans
within both the customer's and program developer's organizations.

2. Extent of formalized procedures to use the computer facility.

3. Extent to which there is a well defined and controlled system change
procedure.

h. Extent of an error-reporting and -correcting procedure.

5. Extent of contingency plans in the event the computer is overloaded or
otherwise unavailable.

6. Extent of quality control that is exercised during testing (e.g., reliability
requirements).

DEVELOPMENT ENVIRONMENT

1. Number of agencies with which the programmer contractor must deal and their
level of experience with system development.

2. Average number of days and effort required for concurrence.

3. Travel requirements.

k. Extent to which delivery dates for required programming tools are reliable,
and correspondingly, the amount of pressure caused by a tight schedule.

5. Extent to which the computer is operated by another agency.

30 June 1964 52 TM-IW7/OOO/02

FACILITIES, SERVICES, AMD SUPPLIES

1. Number of computer operators and EAM personnel required.

2. Number and experience of technical management personnel, administrative
personnel, and technical editors.

3. Cost of special simulation facilities, computer room facilities or special
office equipment.

k. Number of square feet of new office space or building required.

5. Exceptional costs of graphic arts and reproduction.

6. Cost of punched cards, magnetic tape and other special supplies or equipment.

7. Cost of special security requirements (e.g., Top Secret vault).

30 June 1964 53 TM-l447/000/02
(Last Page)

APPENDIX II

CALCULATION OF LEAST SQUARES FIT TO DATA POINTS

y x y» P.

810 33.1 y « a + bx 544 266
6010 373A jw . — 7928 -1918
2986 71.4 b - S| "*y 1375 1611

Ex - nx 2579 -I329
4l66 198.6 4135 31

IU5OO 640.0 a - y - bx 13714 786
10400 459-0 9786 6l4

tol22« >-MKM 5731-714

£
x
y

Zx" - 821,447.20 b - 21.7
Zxy - 17,523,738.0

2

xy - 1,557,386.938 a - -174.3

y' =» -174.3 + 21.7x
x2 - 73,828.1+98

nxy - 10,901,708.566

nx2 • 516,799.486

y m Number of computer hours (observed)

x = Number of instructions (thousands)

y'« Number of computer hours (estimated)

R • Residual

Security Classification

DOCUMENT CONTROL DATA • R&D
(Security claaailication o! title, body of abstract and indexing annotation must be entered when the overall report ie clasaitied)

I. ORIGINATING ACTIVITY (Corporate author)

System D^elopoent Corporation.
Santa, Monica, Cal.

2a. REPORT SECURITY C L ASSI Fl C A TION

26 GROUP UNuLAJ-iiriCD

N/A
3. REPORT TITLE

Factor* That Affect The Cost of Computer Programing Vel I
4 DESCRIPTIVE NOTES (Type •/ report and incluaive datea)

5 AUTHORfS; (Last name, lint name, initial)

Farr, L.
Nanus, B.

6 REPORT DATE

 Jul 6g

la. TOTAU NO. OF PAGES 7 6. NO. OF REFS

]«. CONTRACT OR GRANT NO. 9s ORIGINATOR'S REPORT NUMBERfSJ

T* 1447/000/02

9 b- OTHER REPORT NO(S) (A ny other numbers that may be assigned
this report)

d E3p-T,ift-M-44n
10. AVA IL ABILITY/LIMITATION NOTICES

Qualified Requesters Jby Obtain Copies From DDC.

11. SUPPLEMENTARY NOTES 12- SPONSORING MILITARY ACTIVITY

Directorate of Computers. ESD
L.G. Kanscom Field, Bedford, Mass.

13. ABSTRACT

Although accurate estimation of computer programming costs is an
important peeiequisite for effective programming management, such estimates
have historically been very unreliable. Some of the underlying causes of this pro-
blem are discussed, and about fifty factors that appear to contribute to the cost
of computer programs are identified. Data concerning the effeats of a few of
these factors upon cost are presented by way of illustration. Recommendations
•re made for more detailed cost collection, cost analysis, and experimentation.

»

DD i^, 1473
Security Classification

Security Classification
14.

KEY WORDS
LINK A LINK B LINK C

Programming Computers
Costs
Experimental Data
Anaivsis

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee. Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of authors) as shown on
or in the report. Entei last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATI^ Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.
96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S). (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

Security Classification

